11,005 research outputs found

    Low noise cryogenic dielectric resonator oscillator

    Get PDF
    A microwave oscillator is provided which can operate at a temperature of many degrees above absolute zero while providing very low phase noise that has heretofore generally required temperatures within a few degrees K. The oscillator includes a ring-shaped resonant element of ruby (sapphire plus chromium) or iron sapphire crystal, lying adjacent to a resonator element of sapphire, so that the regenerator element lies directly in the magnetic field of the resonator element. The resonator element is substantially devoid of contact with electrically conductive material. Microwave energy of a pump frequency (e.g., 31 GHz) is outputted from the regenerator element, while signal energy (e.g., 10 GHz) is outputted from the resonator element

    Measurement and analysis of cryogenic sapphire dielectric resonators and DROs

    Get PDF
    Presented are the experimental and computational results of a study on a new kind of dielectric resonator oscillator (DRO). It consists of a cooled, cylindrically symmetric sapphire resonator surrounded by a metallic shield and is capable of higher Q's than any other dielectric resonator. Isolation of fields to the sapphire by the special nature of the electromagnetic mode allows the very low loss of the sapphire itself to be expressed. Calculations show that the plethora of modes in such resonators can be effectively reduced through the use of a ring resonator with appropriate dimensions. Experimental results show Q's ranging from 3 x 10 to the 8th at 77 K to 10 to the 9th at 4.2 K. Performance is estimated for several types of DROs incorporating these resonators. Phase noise reductions in X-band sources are indicated at values substantially lower than those previously available

    Money and mental contents

    Get PDF
    It can be hard to see where money fits in the world. Money seems both real and imaginary, since it has obvious causal powers, but is also, just as obviously, something humans have just made up. Recent philosophical accounts of money have declared it to be real, but for very different reasons. John Searle and Francesco Guala disagree over whether money is just whatever acts like money, or just whatever people believe to be money. In developing their accounts of institutions as a part of social reality, each uses money as a paradigm institution, but they disagree on how institutions exist. Searle argues that the institution of money belongs to an ontological level separate from the physical world, held up by the collective intentions of a group, while Guala claims that money is a part of the ordinary physical world and is just whatever performs a “money-like function” in a group, regardless of what that group believes about it. Here, we argue that any purely functional account like Guala’s will be unable to capture the distinctive phenomenon of money, since monetary transactions are defined by the attitudes transactors hold toward them. Money will be obscured or misidentified if defined functionally. As we go on to show by examining recent work by Smit et al., belief in money does not require taking on all of Searle’s ontological commitments, but money and mental contents will stand or fall together

    Efficient calculation of the worst-case error and (fast) component-by-component construction of higher order polynomial lattice rules

    Full text link
    We show how to obtain a fast component-by-component construction algorithm for higher order polynomial lattice rules. Such rules are useful for multivariate quadrature of high-dimensional smooth functions over the unit cube as they achieve the near optimal order of convergence. The main problem addressed in this paper is to find an efficient way of computing the worst-case error. A general algorithm is presented and explicit expressions for base~2 are given. To obtain an efficient component-by-component construction algorithm we exploit the structure of the underlying cyclic group. We compare our new higher order multivariate quadrature rules to existing quadrature rules based on higher order digital nets by computing their worst-case error. These numerical results show that the higher order polynomial lattice rules improve upon the known constructions of quasi-Monte Carlo rules based on higher order digital nets

    Microwave oscillator with reduced phase noise by negative feedback incorporating microwave signals with suppressed carrier

    Get PDF
    Oscillator configurations which reduce the effect of 1/f noise sources for both direct feedback and stabilized local oscillator (STALO) circuits are developed and analyzed. By appropriate use of carrier suppression, a small signal is generated which suffers no loss of loop phase information or signal-to-noise ratio. This small signal can be amplified without degradation by multiplicative amplifier noise, and can be detected without saturation of the detector. Together with recent advances in microwave resonator Qs, these circuit improvements will make possible lower phase noise than can be presently achieved without the use of cryogenic devices

    Fast autotuning of a hydrogen maser by cavity Q modulation

    Get PDF
    A new fast autotuner for the hydrogen maser was implemented. By modulating the cavity, a phase shift in the maser output signal is induced which is proportional to the cavity tuning error. The phase shift is detected and fed back to a varactor tuner to stabilize the cavity against long-term drifts. Also, a PIN-diode cavity modulator which gives no incidental frequency shift over a very wide range of operation was developed. Modulated at over 200 Hz, it allows variations in maser cavity frequency to be compensated with a loop gain greater than 1000. Compensation of incidental amplitude modulation of the output was demonstrated

    Comparison of Standard Length, Fork Length, and Total Length for Measuring West Coast Marine Fishes

    Get PDF
    Measurements of adult marine fishes on the U.S. west coast are usually made using one of three methods: standard length, fork length, or total length. Each method has advantages and disadvantages. In this paper we attempt to determine whether one method is faster and/or more reliable than the other methods. We found that all three methods were comparable. There was no appreciable difference in the time it took to measure fish using the different methods. Fork length had the most reproducible results; however, it had the highest level of bias between researchers. We therefore suggest that selection of measurement type be based on what other researchers have used for the species under study. The best improvement in measurement reliability probably occurs by adequate training of personnel and not type of measurement used

    New ion trap for atomic frequency standard applications

    Get PDF
    A novel linear ion trap that permits storage of a large number of ions with reduced susceptibility to the second-order Doppler effect caused by the radio frequency (RF) confining fields has been designed and built. This new trap should store about 20 times the number of ions a conventional RF trap stores with no corresponding increase in second-order Doppler shift from the confining field. In addition, the sensitivity of this shift to trapping parameters, i.e., RF voltage, RF frequency, and trap size, is greatly reduced

    Some photometer results obtained on the NASA 1969 Airborne Auroral Expedition

    Get PDF
    The spectral features measured by a photometer onboard the Convair 990 Galileo, during the Auroral Expedition are given in tables. The measurements given cover flights 3 to 15
    corecore